International GCSE in Mathematics A - Paper 4H mark scheme

Question	Working	Answer	Mark	AO		Notes
1	$\begin{aligned} & 2 \times 2 \times 5 \text { or } 2 \times 3 \times 5 \text { or } 3 \times 3 \times 5 \\ & \text { or two of } \\ & 20,40,60 \ldots \\ & 30,60,90 \ldots \\ & 45,90,105 \\ & 2 \times 2 \times 5 \text { and } 2 \times 3 \times 5 \text { and } 3 \times 3 \times 5 \\ & \text { or all of } \\ & 20,40,60,80 \ldots 180 \\ & 30,60,90 \ldots 180 \\ & 45,90,105 \ldots 180 \end{aligned}$	180	3	AO1	M1 M1 A1	for one of $20,30,45$ written as product of prime factors or list of at least 3 multiples of any two of 20, 30, 45 for 180 or $2 \times 2 \times 3 \times 3 \times 5$ oe
2		$7 n-5$ oe	2	AO1		for $7 n+k$ (k may be zero)
3	$\begin{aligned} & \frac{1}{2} \times(10+14) \times 9 \text { oe }(=108) \\ & ' 108 ' \times 6(=648) \\ & ' 648 ' \times 0.7 \end{aligned}$	453.6	4	AO2	M1 M1 M1 A1	for area of cross section (dep on previous M 1) for volume of prism (independent) accept 454

Question	Working	Answer	Mark	AO		Notes
$\begin{array}{cc} 4 & \mathrm{a} \\ & \mathrm{~b} \\ & \mathrm{c} \\ & \mathrm{~d} \\ & \mathrm{e} \end{array}$	$\begin{aligned} & 5 x+35=2 x-10 \text { or } \\ & x+7=\frac{2 x}{5}-\frac{10}{5} \\ & \text { e.g. } 5 x-2 x=-10-35 \text { or } \\ & 7+\frac{10}{5}=\frac{2 x}{5}+x \end{aligned}$	$\begin{gathered} \hline p^{9} \\ m^{-12} \\ 1 \\ 2^{\frac{1}{3}} \end{gathered}$ -15	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ 3	AO1 AO1 AO1 AO1 AO1	B1 B1 B1 B1 M1 M1 A1	for removing bracket or dividing all terms by 5 for isolating x terms in a correct equation dep on M1
5	$\begin{aligned} & 14000 \times 4(=56000) \\ & 0.075 \times \text { ' } 56000 \text { ' }(=4200) \text { or } \\ & 0.075 \times 14000(=1050) \\ & \text { ' } 56000 \text { ' }-42000 \text { ' or } \\ & 14000-1050 \text { ' } \end{aligned}$	51800	4	AO1	M1 M1 M1 A1	NB. multiplication by 4 may occur before or after percentage decrease (dep)

Question	Working	Answer	Mark	AO	Notes
$6 \quad a$ b		$\begin{gathered} \hline \text { triangle with } \\ \text { vertices } \\ (3,-1)(3,-4)(5,-4) \\ \text { Rotation } \\ \text { centre }(-3,0) \\ 90^{\circ} \text { anticlockwise } \end{gathered}$	3	$\mathrm{AO} 2$ AO2	B1 B1 B1 B1 accept $+90^{\circ}, 270^{\circ}$ clockwise, -270° NB. If more than one transformation then no marks can be awarded
7 a b	$\begin{aligned} & 4 \times 15(=60) \text { or } \frac{a+b+c+d}{4}=15 \\ & \text { or } \\ & 4 \times 15-39 \\ & d-a=10 \text { or } a=11 \text { or } \\ & a=" 21 "-10 \text { or } \\ & b+c=39-11=28 \end{aligned}$	21 14	2 2	AO3 AO3	M1 A1 M1 ft from (a) (can be implied by 11, $b, c, 21$ OR $a, b, c, d \text { with } b+c=28)$ A1 cao
8	$\begin{aligned} & 0.02 \times 40000(=800) \text { or } 1.02 \times 40000 \\ & (=40800) \text { or } 2400 \\ & " 40800 " \times 0.02(=816) \text { and } \\ & " 41616 " \times 0.02(=832.32) \text { OR } \\ & 2448.32 \end{aligned}$	42448.32	3	AO1	M1 M1 (dep) method to find interest for year 2 and year 3 A1

Question	Working	Answer	Mark	AO		Notes
9	$\begin{aligned} 3 x+y & =13 \\ -3 x-6 y & =27 \end{aligned} \quad \text { or } \quad \begin{aligned} 6 x+2 y & =26 \\ +\quad x-2 y & =9 \end{aligned}$ eg. $3 x-2=13$ or $15+y=13$	5, -2	3	AO1	M1 M1 A1	multiplication of one equation with correct operation selected or rearrangement of one equation with substitution into second (dep) correct method to find second variable for both solutions dependent on correct working
10	$\begin{aligned} & \frac{14}{3} \div \frac{32}{9} \\ & \frac{14}{3} \times \frac{9}{32} \text { or } \frac{126}{27} \div \frac{96}{27} \text { or } \frac{42}{9} \div \frac{32}{9} \end{aligned}$	answer given	3	AO1	M1 M1 A1	correct answer from correct working
11	$\begin{aligned} & (6-2) \times 180(=720) \\ & \text { ' } 720 \prime-(86+123+140+105) \\ & (=266) \text { or } ‘ 720^{\prime}-454(=266) \\ & \prime 266 \prime \div 2 \end{aligned}$	133	4	AO2	M1 M1 M1 A1	complete method to find sum of interior angles dep on 1st method mark dep on 1st method mark

Question	Working	Answer	Mark	AO	Notes
12 a b c	Plotting points from table at ends of interval Points joined with curve or line segments 60 (or 60.5) indicated on cf graph or stated	$8,25,50,90,112,120$ approx 33	2 2	AO3 AO3 AO3	B1 cao M1 $\pm 1 / 2$ sq ft from sensible table ie clear attempt to add frequencies A1 ft from points if 4 or 5 correct or if all points are plotted consistently within each interval at the correct heights Accept cf graph which is not joined to the origin NB A bar chart, unless it has a curve going consistently through a point in each bar, scores no points. M1 for 60 (or 60.5) indicated on cf axis or stated A1 If M1 scored, ft from cf graph If no indication of method, ft only from correct curve \& if answer is correct ($\pm 1 / 2$ sq tolerance) award M1 A1
13	$\begin{aligned} & P-c=\frac{1}{2} a b^{2} \\ & \frac{2(P-c)}{a}=b^{2} \end{aligned}$	$b=\sqrt{\frac{2(P-c)}{a}}$	3	AO1	M1 Isolate term in b M1 Isolate b^{2} A1 oe with b as the subject

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& AO \& \& Notes \\
\hline \begin{tabular}{l}
14 a \\
b
\end{tabular} \& \begin{tabular}{l}
2 correct points plotted
\[
\begin{aligned}
\& \text { eg }(0,4) \text { and }(3,0) \\
\& 4 x+3 y=12 \text { drawn }
\end{aligned}
\] \\
correct region
\end{tabular} \& \& \[
\begin{aligned}
\& 2 \\
\& 3
\end{aligned}
\] \& AO1
AO1 \& \begin{tabular}{l}
M1 \\
A1 \\
B3
\end{tabular} \& \begin{tabular}{l}
Correct region \\
B2 for \(x=4\) and \(y=-3\) drawn and consistent shading correct for at least two inequalities \\
B1 for \(x=4\) and \(y=-3\) drawn
\end{tabular} \\
\hline \begin{tabular}{l}
15 a \\
b \\
c
\end{tabular} \& \& \[
\begin{aligned}
\& \frac{34}{100} \text { oe } \\
\& \frac{23}{46} \text { oe }
\end{aligned}
\] \& \begin{tabular}{l}
3 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
AO1 \\
AO3 \\
AO3
\end{tabular} \& B3

B1

B1 \& | Correct diagram |
| :--- |
| B2 for 3 over-lapping circles with 7 in intersection and at least 2 other correct numbers |
| B1 for 3 over-lapping circles with 7 in intersection |
| ft from diagram |
| ft from diagram |

\hline
\end{tabular}

Pearson Edexcel International GCSE in Mathematics (Specification A) - Sample Assessment Materials
Issue 1 - February 2016 © Pearson Education Limited 2016

Question	Working	Answer	Mark	AO		Notes
16 a b	$\begin{aligned} & M=\frac{k}{g^{3}} \text { or } M \propto \frac{k}{g^{3}} \\ & 24=\frac{k}{2.5^{3}} \text { oe or }(k=375) \\ & (g=) \sqrt[3]{375 \div\left(\frac{1}{9}\right)} \text { oe or } \sqrt[3]{3375} \end{aligned}$	$M=\frac{375}{g^{3}}$	3 2	AO1 AO1	M1 M1 A1 M1 A1	implies first M1 accept $M=\frac{k}{g^{3}}$ with $k=375$ stated elsewhere in question
$17 \quad \mathbf{a}$ b c	$g(2)=6$	$\begin{gathered} -3 \\ 2 \\ 0.75 \text { oe } \end{gathered}$	1 1 2	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 1 \end{aligned}$	B1 B1 M1 A1	
18	correct length scale factor eg. $\sqrt{\frac{384}{864}}$ or $\frac{2}{3}$ or $\frac{3}{2}$ $\left(\frac{2}{3}\right)^{3} \times 2457$	728	3	AO2	M1 M1 A1	for complete method

Pearson Edexcel International GCSE in Mathematics (Specification A) - Sample Assessment Materials
Issue 1 - February 2016 © Pearson Education Limited 2016

\begin{tabular}{|c|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& AO \& Notes \\
\hline 19 \& \& E, B, D, A \& 3 \& AO1 \& \begin{tabular}{l}
B3 All correct \\
B2 for 3 correct \\
B1 for 2 correct
\end{tabular} \\
\hline \begin{tabular}{l}
a \\
b
\end{tabular} \& \begin{tabular}{l}
\[
\frac{4}{9} \times \frac{3}{8}
\] \\
\(\frac{5}{9} \times \frac{4}{8}+\frac{4}{9} \times \frac{5}{8}\) or \(\frac{20}{72}+\frac{20}{72}\) oe or \(1-\frac{4}{9} \times \frac{3}{8}-\frac{5}{9} \times \frac{4}{8}\) or \(1-\frac{1}{6}-\frac{5}{9} \times \frac{4}{8}\) oe
\end{tabular} \& \[
\begin{aligned}
\& \frac{1}{6} \\
\& \frac{5}{9}
\end{aligned}
\] \& 2

3 \& \begin{tabular}{l}
AO3

AO3

 \&

A1 oe, eg $\frac{12}{72}$

Allow $0.16(666 \ldots)$ rounded or truncated to at least 2 dp

M2 M1 for $\frac{4}{9} \times \frac{5}{8}$ or $\frac{5}{9} \times \frac{4}{8}$ or $\frac{20}{72}$ oe

Accept fractions evaluated

$$
\frac{20}{72}=0.27 \dot{7}, \frac{12}{72}=0.16 \dot{6}
$$

rounded or truncated to at least 2 dp

A1 oe, eg. $\frac{40}{72}$ or $\frac{20}{36}$
\end{tabular}

\hline
\end{tabular}

Question	Working	Answer	Mark	AO		Notes
21	$\begin{aligned} & \frac{\sin 47}{13.8}=\frac{\sin M L N}{8.5} \\ & M L N=\sin ^{-1}\left(\frac{\sin 47 \times 8.5}{13.8}\right) \\ & M L N=26.7(73 \ldots) \\ & L M N=180-47-26.7 \ldots \text { '.. or } \\ & 106(.2260622 \ldots) \\ & \frac{1}{2} \times 8.5 \times 13.8 \times \sin (" 106 ") \end{aligned}$	56.3	6	AO2	A1	Or method using a right angled triangle to find length $M X$ ($M X$ is perpendicular to $L N$) $\begin{aligned} & \sin 47=\frac{M X}{8.5} \\ & \text { or } \cos ^{-1}=\frac{8.5 \sin 47}{13.8} \\ & L M X=63.232 \end{aligned}$ $L M N=63.232+(180-(90+47)) \ldots \text { or } 106(.2260622 \ldots)$ Accept an answer that rounds to 56.3 or 56.4 unless clearly obtained from incorrect working.
22 a b	$\begin{aligned} & 2\left(x^{2}-4 x\right)+9 \text { or } \\ & 2\left(x^{2}-4 x+\frac{9}{2}\right) \\ & 2\left((x-2)^{2}-2^{2}\right)+9 \text { or } \\ & 2\left((x-2)^{2}-2^{2}+\frac{9}{2}\right) \end{aligned}$	$2(x-2)^{2}+1$ explanation	3	AO1 AO1	M	eg. Because minimum is at $(2,1)$

Question	Working	Answer	Mark	AO		Notes
23	$\begin{aligned} & \overrightarrow{B C}=\overrightarrow{B A}+\overrightarrow{A C} \text { or } \\ & \binom{-2}{-3}+\binom{9}{4} \text { or }\binom{7}{1} \\ & \sqrt{{ }^{\prime 7^{\prime 2}++^{\prime 2}}} \end{aligned}$	$\sqrt{50}$ oe	3	AO2	M1 M1 A1	dep accept 7.07(06...)
24	$\begin{aligned} & \frac{(\sqrt{12}-1)(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})} \\ & \frac{2 \sqrt{12}-2+\sqrt{12} \sqrt{3}-\sqrt{3}}{4-3} \\ & \sqrt{12}=2 \sqrt{3} \end{aligned}$	shown	4	AO1	M1 M1 B1 A1	method to rationalise correct expansion of brackets may be seen before expansion answer from fully correct working with all steps seen
25	$\begin{aligned} & (v=) 3 t^{2}-5 \times 2 t-8 \\ & 3 t^{2}-10 t-8=0 \\ & (3 t+2)(t-4)=0 \end{aligned}$	4	4	AO1	M1 A1 M1 A1	for 2 out of 3 terms differentiated correctly correct equation for method to solve quadratic $t=4$ only

